A Fast Algorithm for Sparse PCA and a New Sparsity Control Criteria
نویسندگان
چکیده
Sparse principal component analysis (PCA) imposes extra constraints or penalty terms to the standard PCA to achieve sparsity. In this paper, we first introduce an efficient algorithm for finding a single sparse principal component (PC) with a specified cardinality. Experiments on synthetic data, randomly generated data and real-world datasets show that our algorithm is very fast, especially on large and sparse data sets, while the numerical quality of the solution is comparable to the state-of-art algorithm. Moreover, combining our algorithm for computing a single sparse PC with the Schur complement deflation scheme, we develop an algorithm which sequentially computes multiple PCs by greedily maximizing the adjusted variance explained by them. On the other hand, to address the difficulty of choosing the proper sparsity and parameter in various sparse PCA algorithms, we propose a new PCA formulation whose aim is to minimize the sparsity of the PCs while requiring that their relative adjusted variance is larger than a given prespecified fraction. We also show that a slight modification of the aforementioned multiple component PCA algorithm can also find sharp solutions of the latter formulation.
منابع مشابه
An algorithm for sparse PCA based on a new sparsity control criterion
Sparse principal component analysis (PCA) imposes extra constraints or penalty terms to the standard PCA to achieve sparsity. In this paper, we first introduce an efficient algorithm for finding a single sparse principal component (PC) with a specified cardinality. Experiments on synthetic data, randomly generated data and real-world data sets show that our algorithm is very fast, especially on...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کامل